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A study is made of the wave disturbance generated by a localized steady pressure 
distribution travelling a t  a speed close to the long-water-wave phase speed on water 
of finite depth. The linearized equations of motion are first used to obtain the large-time 
asymptotic behaviour of the disturbance in the far field ; the linear response consists 
of long waves with temporally growing amplitude, so that the linear approximation 
eventually breaks down owing to finite-amplitude effects. A nonlinear theory is 
developed which shows that the generated waves are actually of bounded amplitude, 
and are governed by a forced Korteweg-de Vries equation subject to appropriate 
asymptotic initial conditions. A numerical study of the forced KortewegAe Vries 
equation reveals that a series of solitons are generated in front of the pressure 
distribution. 

1. Introduction 
The generation of water waves by a two-dimensional pressure distribution, which 

is applied a t  the free surface and is travelling a t  a constant speed, is discussed by 
Stoker (1957), using the linearized water-wave theory. The large-time asymptotic 
behaviour of the generated wave disturbance in the far field is extracted from the 
exact solution of an initial-value problem. Alternatively, the characteristics of the 
excited waves, when the initial transients have died out, can be obtained directly by 
simple kinematic arguments (Whitham 1974) : the main disturbance consists of a 
uniform sinusoidal wavetrain with phase speed equal to the propagation speed U of 
the pressure excitation; the position of the waves relative to the source depends on 
the magnitude of their group velocity. In  particular, for waves on water of uniform 
depth, neglecting surface-tension effects, the phase and group velocities are increasing 
functions of the wavelength, the group velocity being smaller than the phase velocity. 
Accordingly, waves are excited in the far field only if the pressure disturbance travels 
a t  a speed slower than the long-water-wave speed, c,, (U  < c,,), and appear behind the 
source. I n  the case U > co, only transients are generated, which decay in the far field. 

Stoker (1957) noted, however, that, when the pressure source travels a t  the 
long-water-wave speed ( U  = c,,), the linear response becomes unbounded. The un- 
bounded growth predicted by the linear theory as U approaches c,, can be e.asily 
understood ; for the energy transferred by the travelling pressure distribution to the 
water cannot be radiated away from the source owing to the fact that the group 
velocity of the generated waves approaches U .  Thus the linear theory cannot be 
uniformly valid : however small the pressure excitation, the generated disturbance 
eventually attains a finite amplitude and the linearized equations of motion are 
invalidated ; the neglected nonlinear terms become of crucial importance in the 
evolution of the response in the finite-amplitude regime. 
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More recently, Wu & Wu (1982) examined the nonlinear behaviour of the generated 
wave disturbance close to  critical conditions (U  = co).  Using the Boussinesq long-wave 
approximation, they investigated numerically the waves generated by a certain 
travelling pressure distribution. Their results indicate the appearance of solitons in 
front of the pressure source. 

I n  the present study, which aims a t  describing the excited wave disturbance from 
the early stage, when the linearized equations of motion are valid, to the nonlinear 
regime, a different approach is adopted: first the results of the linear theory a t  the 
criticial speed U = co are reexamined ; a uniformly valid expression for the dominant 
disturbance in the far field is derived, which shows that the linear response becomes 
unbounded for large times only, and not for large distances from the pressure 
excitation (at  a fixed time) as claimed by Stoker (1957). Secondly the evolution of 
the generated waves in the finite-amplitude regime is investigated by asymptotically 
matching the nonlinear response to  the linear far-field response. It is found that the 
nonlinear response is of finite, but relatively large, amplitude and is governed by a 
forced Korteweg-de Vries equation subject to  appropriate asymptotic initial condi- 
tions. A numerical study of the forced Korteweg-de Vries equation reveals that a 
series of solitons are generated in front of the pressure distribution, in qualitative 
agreement with the results of Wu & Wu (1982). Finally some comments are made 
regarding the agreement of the theoretical predictions with the solitons observed by 
Huang et al. (1982) in their experiments with ships moving in very shallow water. 

Debnath & Rosenblat (1969) discuss the more general problem of surface-wave 
excitation by a time-harmonic travelling pressure distribution. They find critical 
speeds a t  which the linear theory predicts an unbounded response. It appears that 
the methods developed here might also be extended to these cases. 

2. Formulation and linear solution 
Consider water of uniform depth h, 0 < y < h, under the action of a pressure 

distribution p ( x ) ,  applied a t  the free surface and travelling a t  a constant speed. A 
frame of reference is adopted such that the pressure is stationary and a uniform 
current U exists in the water. The classical gravity water-wave problem is formulated 
in terms of the velocity potential @ = Ux-+Uzt+$(x, y, t )  and the free-surface 
elevation y = h+ ~ ( x ,  t ) .  It proves convenient to  use dimensionless (primed) variables : 

where g is the gravitational acceleration, p is the water density, c,, = (gh); is the 
long-water-wave speed and a denotes a typical perturbation amplitude. When the 
primes are dropped, the problem consists of Laplace’s equation 

$zz+$yv = 0 (0 < Y < 1 +€7)> (1)  

vt+-7s+&7, = $y (Y = 1+€7),  (2) 

$ t + 7 + - $ , + W ; + $ ; )  = -P(X) (Y = 1+€7)> (3) 

$y = 0 (y = O),  (4) 

subject to the kinematic and dynamic conditions a t  the free surface, and the bottom 
boundary condition 

U 

CO 

U 

CO 
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where the dimensionless parameter E = a/h  is a measure of nonlinearity. I n  addition, 
initial conditions are needed, and, following Stoker (1957), it  is supposed that the 
pressure distribution is switched on at t = 0, the water being undisturbed for t 6 0, 
so that 

T = T  t -  - $ = $ & = 0  ( t = 0 ) .  ( 5 )  

The linear response is the solution of the linear initial-value problem (1)-(5) (8 = 0)t  
and is readily found by taking Fourier transforms in x: 

m 

$(x ,  y ,  t )  = $ ( k ;  y ,  t )  eikz dk. 
--oo 

Elementary manipulations then show that (see Stoker 1957) 

& k ; y , t )  = A(k;t)coshky, (7) 
1 e-itf+ .-itf- 

where 
2 ( k  tanh k); (r-f-)} ' 

U 

CO 
with f,(k) = -kk(ktanhk):, (9) 

@(k) being the transform of p ( x ) .  Having determined the perturbation velocity 
potential $, the free-surface elevation can be obtained from the linearized form 

It can be easily verified that the integral in (6) is non-singular, although the 
individual terms in (8) can have poles on the real axis. It proves convenient for the 
subsequent discussion, however, to work with the velocity component $x and 
separate i t  to steady and time-varying parts : 

of (3).  

$z(x ,Y , t )  = $;(x3Y)+$:(X>Y>t)> (10) 

where 

the contour C extends from - co to co and is indented with semicircles to pass below 
any poles on the real axis. 

As shown by Stoker (1957), for U =# co, the response eventually consists of the 
steady part alone: if U < co a uniform wave is found behind the source and no 
disturbance ahead, while if U > c,, no disturbance a t  all exists far from the pressure ; 
the unsteady part 4: represents transients which die out at any position as t+co. 
However, a t  critical conditions ( U  = co) these conclusions are not valid. In fact, as 
will be seen in $3,  the dominant disturbance in the far field is provided by 4;. 

3. Asymptotic behaviour in the far field 
As already indicated, the case of primary interest here is when U/c ,  = 1 ,  for, in 

this instance, the linear theory predicts an unbounded response for large times. 
Accordingly, the asymptotic behaviour of $: and $: is sought under the condition 
u/co = 1 .  

t Since no steady state exists under the condition U / c ,  = 1, which is of interest here, the simpler 
approach discussed by Whitham (1974), which avoids the solution of an initial-value problem, gives 
a singular result. 
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has a double pole a t  k = 0. Thus, using the residue theorem, we write 
First consider the steady term q5:. From (9) i t  is clear that  the integrand in (11)  

& = 6nH(x) @(O)x-@’(O))+q5;* (x 2 0), (13) 

where H ( z )  is the Heaviside unit-step function, and 

the contour Cf is now indented with a semicircle to pass above the pole at k = 0, and, 
for convenience, the notation C- is used for the original contour C. 

It should be noted that &* - t O  as x-tf 00 ; both integrals go to zero a t  least as 
l /x  since no points of stationary phase exist and the contributions of the semicircles 
of C* vanish as x+ & 00. Therefore, far from the pressure distribution, the steady-state 
term 4: gives a disturbance growing like x for x > 0,  and makes no contribution to 
x < 0. 

Consider next the time-dependent part 4; ; i t  can be rewritten as 

the path of integration in the second integral in (15) has been deformed back to the 
real axis, since the integrand is regular at k = 0. 

We are interested in the asymptotic behaviour of 4; in the far field : t -t 00, m = x / t  
fixed ; the main contribution comes from the neighbourhood of points of stationary 

(16) 
phase k,: 

It is clear from (9) that  the second integral in (15) has a second-order stationary point 
(f :(k,) = 0, f ;(k,) =?= 0) a t  k ,  = 0 for m = 2, and the dominant contribution decays 
like t-i by the standard stationary-phase argument. However, as will be shown, this 
contribution is negligible compared with that of the first integral in (15). Accordingly, 
attention is focused on the first integral I ,  which is re-expressed by the residue 
theorem : 

f; (k,) = m. 

4; N I(x,t) = -6nH(x)@(O)x-ij3’(O))+I*(x,t) (z 2 0), (17) 

where 

and G’ are defined as in (14). It is important to notice that the residue contribution 
to l(x, t )  in (17)  cancels exactly the residue contribution to  4: in (13).  

It remains to examine the far-field asymptotic behaviour of I* (x, t ) .  The main 
contribution to the integrals in (18) comes from the neighbourhood of k = 0 for m - t O  : 
k = 0 is a second-order point of stationary phase and a double pole of the integrand. 
Thus expanding about k = 0 

(19a) f-(k) = Qk3+ ... ) 

+ ... ) -- 6$(0) - 
k2$ cosh ky 

( k  tanh k); cosh k f- k2 

and with the change of variables s = (it)$ k ,  the uniformly valid expressions 
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FIGURE 1. The functions F C ( ( ) ,  ( > 0, and F ( E ) ,  < 0. 

are obtained, where 6 = x(2/t):. The integrals in (20) can be evaluated asymptotically 
by the method of steepest descent to show that I*(x ,  t )  tend to zero as [+& co : 

Alternative expressions for I* ( x ,  t )  can be obtained from (20) by noting that 
00 

I& - - 3$(0) (it): j exp [i(& -is3)] ds 
--a, 

= - 67c$(O) (i t)$ Ai ( - t), (23) 

Ai being the standard Airy function; integrating (23) twice, using (21) and (22), one 
finds 

I ' ( x , ~ )  - -6~$(0 )  ( i t ) iF' ([)  (6 5 0), (24) 

where 
F+(6) = r' d s r  Ai ( a ) d a  (6 > 0), (25) 

--a, -00 

Finally, combining (13), (17) and (24), the asymptotic behaviour of $z as t+co 
reads 

9, - 6;' - 6 ~ $ ( 0 )  (it): F' (6) (X 5 0). (27) 

Therefore, a t  a fixed position, the dominant disturbance grows like ti as t - t  CQ 

(assuming $(O) =I= 0) : 
9, - 67c@(O) (it)$Ai'(O), (28) 

where the fact Ff(0) = li"(0) = -Ai' (0) = 0.25882 has been used. On the other hand, 
for large distances (161+co, t+co),  i t  is clear from (21) and (22) (see figure 1 )  that 
the disturbance decays exponentially for x < 0 and algebraically for x > 0. 
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The conclusions reached above are a t  variance with those of Stoker (1957), who 
finds that the disturbance becomes unbounded in time like t i  and in space like x. The 
cause of the disagreement can be traced back to the asymptotic evaluation of q5; : 
if the expression (15) for q5: is differentiated with respect to t ,  Watson’s lemma can 
be used directly to find that q5& (the integrand of which is now regular a t  k = 0) 
behaves like t-s; on these grounds, Stoker (1957) inferred that q5; grows like ti and, 
using (13), concluded that q5z grows in space like x as well. However, it is clear now 
that, by examining $I. alone, the residue contribution to q5; in (17) was missed, and 
thus the term proportional to x in (13) did not cancel. 

4. Nonlinear analysis 
As shown in $3, the linear theory predicts an unbounded response as t --f 00. Thus 

the originally negligible nonlinear terms eventually become important and the 
unbounded growth is modified.? An asymptotic theory which accounts for the 
finite-amplitude effects ( E  $ 1 )  is developed in this section. 

The timescale on which the nonlinear effects come into play can be found by 
referring back to ( 2 7 )  : for t & 1 the amplitude of the disturbance grows like €ti, while 
the dispersive effects, which are proportional to  the square of the wavenumber, decay 
like t-!; a balance is reached when t = O ( E - ’ ) .  Accordingly, the slow time T = et and 
the slow spatial variable X = &x (suggested by the definition of 15) are defined. 
Furthermore, when t = O(e-l), q5 = O(e-%) and q = O(E-:),  so that new rescaled 
variables, appropriate in the far field, are adopted: 

q5 = E-%$(X,  T;y), 7 = e- iT(X,  T )  (29) 

d(LTXX+qJYY = 0 (0 < y < l+€%q), (30) 

E’fX + Et(TT + h f x  + $X T X )  = $y (y = 1 + dq7, 

~ + ~ X + f ~ + € ~ ( ~ T + A ~ x + ~ X )  =-&w(x/e’) (y = 1 +&q), (32) 

qJy = o  (Y = O ) ,  (33) 

where now $ and $i are assumed to be O( 1). 
I n  terms of the new variables, the governing equations (1)-(4) read : 

(31 1 

and the possibility of being slightly off critical conditions, U/c,  = 1 + A d ,  h = O ( l ) ,  
has been included. 

An asymptotic approximation to (30)-(33) is sought in the far field (X = O ( l ) ,  
T = O( l ) ,  e+O). The procedure to be followed in some respects parallels the 
derivation of the nonlinear long-wave approximation to the full water-wave theory 
(Whitham 1974) : the velocity potential 6 is expressed as an expansion in powers of 
d y ,  which satisfies Laplace’s equation (30) and the bottom boundary condition (33) : 

t The effects of viscosity, which are not included here, are expected to be negligible since we 
are dealing with long waves. 
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However, e-ip(X/d)-t27T@(o) 6 ( X )  (€-to), (37) 

where 6 ( X )  is the Dirac delta function, so that, differentiating (36) with respect to 
X, using (35), and fx = -f+O(&), a single equation for f i s  obtained to leading order: 

(38) 

Not unexpectedly, the homogeneous part of (38) is the Korteweg-de Vries (KdV) 
equation. Normally, the nonlinear long-wave approximation to the full water-wave 
theory leads to  the Boussinesq equations; the KdV equation is derived therefrom 
under the further assumption of waves propagating in one direction only. However, 
in the present problem, the KdV equation is obtained directly, in accordance with 
the fact that  the dominant disturbance follows the moving pressure distribution. (The 
part of the disturbance moving in the opposite direction is given, according to the 
linear theory, by the second integral in (15), and, as already indicated, is negligible.) 

The appropriate initial conditions for the solution of (38) are obtained by matching 
asymptotically the finite-amplitude response to the result predicted by the linear 
theory: a t  intermediate times t % 1 with T 4 1,  the linear theory is valid; thus, 
recalling (27) and the fact 7 - -g5z, it follows that 

?jT + h f x  - 2 f f x  - gxxx = @(O) 6’ (X) . 

f ( X ,  T )  - 6@(0) ($T)k@([) (5” 4 1) .  (39) 

It can be readily verified that (39) satisfies the linearized version of (38) (with h = 0) 
for [ 2  0: setting f ( X ,  T )  = fig([), direct substitution in (38) yields 

gg5+kg:Sf-9 = 0 (k  * O),  (40 1 
or s[&[+&g = 0 (5 * 0); (41) 

the relevant solution is proportional to Ai (-[), in agreement with (23). Furthermore, 
since the functions F*([) defined in (25) and (26) satisfy the conditions? 

Ft(0) = F-(O) = -Ai’ (0) = 0.25882, F5+(0) = -$, 

FL(0) = 5, F&(O) = FE(0) =Ai(O) = 0.35503, 

it  is clear that  the appropriate jump conditions at X = 0, imposed by the right-hand 
side of (38), are met. 

If h =I= 0, the appropriate solution of the linearized forced KdV equation takes the 
form 

exp [is(X- AT) -1 
‘ds (X + 0), 

s2 + 6h T(X,  T )  = - 3@(0) 
Cf 

where C+ passes above the poles of the integrand, while C- passes below. Using the 
method of steepest descent, i t  can be shown that for h > 0 the disturbance eventually 
decays as T-t 00 for any fixed X; for h < 0 the disturbance decavs if X < 0, but forms 

These conclusions are consistent with the predictions of the full linear theory. 
According to (38) and (39), the evolution of the generated wave disturbance in the 

far field depends on $ ( O )  only, which is proportional to the total force acting on the 
water surface and is assumed to be finite; the precise details of the pressure 

t Equation (40), together with the above conditions at E = 0, can be used to compute numerically 
the functions Ff([); the results shown in figure 1 were computed in this way, using a standard 
fourth-order Runge-Kutta scheme. 
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FIGURE 2(a, a). For caption see facing page. 

distribution are of significance only in a small region around X = 0, where the initial 
condition (39) exhibits a discontinuous slope (figure 1) .  In reality, of course, the 
disturbance is smooth at  X = 0 owing to the contribution &* in (27); such terms 
can be consistently neglected in (39) since they are small for (XI 9 €4, where (38) 
applies. (Strictly speaking, (38) is not valid in an O($) region around X = 0, where 
the disturbance varies rapidly (with respect to X )  and is governed by the full water-wave 
theory. However, to the leading-order approximation used here, the width of this 
region has shrunk to zero.) 

The scalings (29) imply that the far-field disturbance is of relatively large amplitude 
(O(& for an O ( E )  pressure excitation), but remains bounded ; the unbounded response 
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FIQURE 2. The evolution of the wave disturbance at critical conditions (A = 0): -, nonlinear 

response; ..., linear response. (a) T = 0.8; ( b )  1.7; (c) 3.2. 

predicted by the linear theory is just the first term in the expansion of the nonlinear 
response for small T.  The evolution of the disturbance for T = O(1) is governed by 
the inhomogeneous KdV equation (38) with the initial condition (39) ; the appropriate 
solution is unknown, however. Accordingly, the question whether the nonlinear 
response evolves to solitons, or disperses out, or even gives a cnoidal wave (since for 
h < 0 the linear response consists of a periodic sinusoidal wave in X > 0 as shown 
in (43)) still remains. It is answered in $5 by a numerical investigation. 

5. Numerical results 

finite-difference scheme, suggested by Vliegenthart (197 1 ) .  With the notation 
The inhomogeneous KdV equation (38) was solved numerically by an explicit 

77 = f ( i  A X ,  n A T ) ,  

+?+l is approximated by a Taylor-series expansion for X =I= 0 :  

7j+' = r j + A T f $ j + ; 2 A P f $ T j ,  (44) 

with O ( A P )  local truncation error. Using (38), qT and f T T  can be expressed in 
terms off ,  f x ,  f x x ,  fxxx, f x x x x  and f x s x x x x x ,  which are then approximated a t  
(i A X ,  n A T )  by second-order centred finite differences. At X = 0 the jump conditions 
implied by the right-hand side of (38) are imposed: 

q ( X  = 0-, T )  = f ( X  = Of, T ) ,  f x ( X  = 0-, T ) - f x ( X  = Of, T )  = Bxyi(O),\ 

f x x ( X  = OW, T )  = f x x ( X  = Of, T )  
J ' (45) 

replaced by finite differences. Furthermore, a sufficiently large domain for X was 
decided by numerical experiments so that, within the computational time interval, 
the disturbances behaved according to the linear result (42) a t  the boundaries of the 
domain. Thus, starting with the asymptotic initial condition (39) a t  T = T, 4 1,  the 
solution of (38) was advanced numerically in time. 
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FIGURE 3(a ,  b). For caption see facing page. 

The above numerical procedure was carried out with AX = 0.08 and To = 0.1. As 
shown by Vliegenthart (1971), the numerical scheme is only conditionally stable and 
is expected to be stable for AT 5 AX3.  (Our experience shows that, in the present 
problem, for AX = 0.08, AT < 0.6 x lop3 is sufficient for stability.) I n  addition this 
scheme incorporates some ‘numerical damping ’ required to resolve accurately the 
highly oscillatory nature of the solution for X > 0 ; preliminary numerical experiments 
showed that simpler finite-difference schemes, such as those used by Zabusky & 
Kruskal (1965) or Peregrine (1966), were not appropriate for the problem of interest. 

The accuracy of the numerical calculations was checked in various ways: first, the 
known exact linear solution (39) was compared with the corresponding numerical 
solution and agreement was found to within 2 or 3 yo for T 5 5. Secondly, the 
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FIQURE 3. The wave disturbance at T = 4.1: (a )  h = 0;  ( b )  0.25; ( c )  -0.5. 

numerical scheme was successfully tested against known soliton solutions of the KdV 
equation. Finally, the use of refined integration steps AT, AX,  and a larger 
computational domain for X did not alter the results within the accuracy reported 
here, especially in the domain - 10 < X < 10, where the most interesting effects occur 
for T 5 4.5. 

Figures 2 (a-c) show the evolution of the wave disturbance in the nonlinear regime 
a t  critical conditions ( A  = 0) ; a comparison with the corresponding linear solution 
(39) is also made. Solitons are successively generated in X < 0 and propagate in front 
of the pressure distribution : after each soliton reaches a certain equilibrium amplitude, 
a new soliton of slightly smaller equilibrium amplitude is released. Immediately 
behind the pressure excitation, a long wave trough appears (to balance more or less 
the amount of water used to form the solitons) ; a t  larger distances from the pressure, 
the wave disturbance is highly oscillatory with a larger amplitude than that predicted 
by the linear theory. 

For supercritical or subcritical speeds ( A  2 0), solitons are generated in a way 
qualitatively similar to  the critical case described above. Figures 3(a-c)  show the 
wave disturbance a t  T = 4.1 for h = 0, 0.25 and -0.5. It is clear that both the 
equilibrium amplitudes of the generated solitons and the period of soliton formation 
increase as h increases. However, the relative amplitude difference between successive 
solitons appears to decrease as h increases. 

It is interesting that the theoretical predictions concerning the generated solitons 
are in good agreement with the experimental results of Huang et al. (1982). Although 
the experiments involved a ship moving in a shallow-water tank of finite width, 
two-dimensional solitons were observed in front of the ship a t  speeds close to the 
long-water-wave speed. This points to  the fact that the generation of solitons depends 
on the total force acting on the water-surface only, and not on the precise details of 
the excitation (even if the source is three-dimensional!), in accordance with the 
asymptotic theory. Moreover, all the trends of the theoretical predictions noted above 
close to critical conditions are in agreement with experiment. 

The numerical calculations of Wu & Wu (1982) with the Boussinesq equations also 
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succeed in predicting the appearance of solitons, but there are marked differences 
between their results and the results of this study: first, according to Wu & Wu, the 
generated solitons keep growing indefinitely as they propagate away from the 
pressure distribution ; secondly, in the oscillatory tail, far behind the pressure, the 
wave crests are far more peaked than the troughs. The question as to whether these 
discrepancies are due to numerical error or some other reason still remains. 

The author would like to thank Professor D. J. Benney for helpful discussions on 
this topic and Professor C. C. Mei for first pointing out the work of Wu & Wu. 
Also, thanks are due to Professor J. V. Wehausen for providing me with the paper 
of Huang et al. This work was supported by the Office of Naval Research under project 
NR 062-742. 
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